In MS white blood cells of the immune system enter the central nervous system (CNS) where they are thought to play a major role in driving disease and CNS degeneration. However, CNS degeneration also occurs through non-immune mechanisms.
The work in this application will use laboratory models of MS and study samples of human MS tissue to investigate the role of two enzymes in controlling white blood cell activation and migration. This study has potential to lead to novel therapeutics for patients with MS, will increase understanding of activation and migration of white blood cells and determine whether these molecules regulate demyelination and remyelination of the CNS.
Dr Iain Comerford, working at the University of Adelaide School of Molecular and Biomedical Science, was awarded a 3 year fellowship by MS Research Australia in 2010 to research two enzymes that regulate immune function.
The enzymes being investigated are called ‘p110δ’ and ‘p110γ’. His research utilises laboratory models of MS to investigate the role of the two enzymes in controlling white blood cell activation and migration. These enzymes are vital for the function of a multitude of white blood cells, including T cells, B cells and neutrophils. They are therefore promising targets for drugs that prevent or treat inflammation and autoimmunity. ‘In multiple sclerosis (MS), white blood cells of the immune system enter the central nervous system (CNS) where they are thought to play a major role in driving disease and CNS degeneration,’ reported Dr Comerford ‘However, CNS degeneration also occurs through non-immune mechanisms.’
In his research, Dr Comerford has used a laboratory model of experimental autoimmune encephalomyelitis (EAE) to study the role of these enzymes in driving the central nervous system damage. He has published a manuscript in the Journal of Autoimmunity which presents data demonstrating that the enzyme p110δ is required for full and sustained pathology of EAE and that this enzyme is required for optimal activation of a subset of T cells which cause disease in both EAE and MS. In addition, Dr Comerford has discovered that the other enzyme, p110γ, is also required for EAE to progress as mice with a deficiency of p110γ have a variety of immune system defects that block the disease process. Importantly, Dr Comerford has shown that treating EAE mice with an orally active drug which inhibits the p110γ enzyme, reverses the pathology of the disease.
The remainder of this study will now focus upon the role of these two enzymes in a non-autoimmune model of MS in which a toxin called cuprizone is used to damage myelin.
An important part of a post-doctoral fellowship, such as the award made to Dr Comerford, is to develop collaborations to enable the researcher to establish an independent career as an MS researcher in the future. To this end, Dr Comerford has been working in collaboration with Associate Professor David Booth at Westmead Millennium Institute, Sydney, for the genetic analysis part of his project and with the MS Research Australia Brain Bank to obtain MS tissue for his studies. He has also been supervising and mentoring two PhD students, one of whom has recently graduated; this is also a vital contribution to training the next generation of MS researchers.
Updated: 12 June 2013
Professor Shaun McColl
$240,000
2010
3 years over 2010 - 2012
Past project